Fractions

Year 3

Find Unit Fractions of Quantities (1)

```
Vocabulary:
Fraction Notation Divided Equal Numerator Denominator Whole Parts
Fraction Bar (Vinculum) Half Third Quarter Fifth Sixth Seventh Eighth
Ninth Tenth One-__ Bar Model Equation Expression Linear Volume
Area Quantity Times as much / Times the size of
```


Area contexts

Quantity contexts

The whole is \qquad . The whole has been divided into \qquad equal parts. Each part is $\stackrel{1}{-}$ of the whole.

$$
\underline{1} \text { of __ is_. }
$$

Linear contexts

Volume contexts

Generalisation:

Fractions

Year 3

Find Unit Fractions of Quantities (2)

Vocabulary:

Fraction Notation Divided Equal Numerator Denominator Whole Parts Fraction Bar (Vinculum) Half Third Quarter Fifth Sixth Seventh Eighth Ninth Tenth One- \qquad Bar Model Equation Expression Linear Volume Area Quantity Times as much / Times the size of

12					
2	2	2	2	2	2

$12 \div 6=2 \quad \frac{1}{6}$ of $12=2$

We can division facts to help us find the fraction of an amount, representing this use bar models.

To find $\frac{1}{5}$ of 15 , we divide 15 into 5 equal parts.
15 divided by 5 is equal to 3 ,

$$
\text { so } \frac{1}{5} \text { of } 15 \text { is } 3 .
$$

The whole is 12 apples. The whole has been divided into 6 equal parts.

Each part is $\frac{1}{6}$ of the whole.
$\frac{1}{6}$ of 12 apples is 2 apples.

$\frac{1}{5}$ of 15

$15 \div 5=3$
so $\frac{1}{5}$ of $15=3$

We can compare fractions with the same numerator. We can compare these in different contexts.

Generalisation:

When both fractions have the same numerator, the greater the denominator, the greater the fraction.

When we compare fractions, the whole must be the same.

Fractions

Year 3

Find Unit Fractions of Quantities（3）

Part	Part as a fraction of the whole	Number of equal parts in the whole	Whole
Δ	$\frac{1}{3}$	3	\triangle
\square	$\frac{1}{5}$	5	$\square 17$
大RRRR凡	$\frac{1}{4}$	4	
\longmapsto	$\frac{1}{5}$	5	ص
部部	$\frac{1}{7}$	7	降降章年

If we know the size of the unit fraction，we can work out the size of the whole．

The whole is divided into \qquad equal parts． Each part is \qquad of the whole．

If one－ \qquad is a part，then the whole is \qquad
times as much．Take \qquad parts and put them together to make one whole．

Fractions

Year 5

Find Non-Unit Fractions of Quantities.

Vocabulary:

Fraction Notation Divided Equal Numerator Denominator Whole Parts Fraction Bar (Vinculum) Half Third Quarter Fifth Sixth Seventh Eighth Ninth Tenth One- \qquad Number line Part-Part-Whole Model Units Previous Next Estimate Intervals Convert Improper Fractions Mixed Numbers Add Subtract (Minus) Aggregation Augmentation Reduction Partitioning Difference

$\frac{1}{5}$ of $15=3$
$\frac{2}{5}$ of $15=6$
of $15=9$
of $15=12$
of $15=15$

We can skip count in unit fractions to help us

 find the quantity of a non-unit fraction.2 one-fifths of 15 is equal to 6,
3 one-fifths of 15 is equal to 9...

$$
40 \div 5=8
$$

so $\frac{1}{5}$ of $40=8$
$40 \div 5=8$
so $\frac{1}{5}$ of $40=8$

$$
\frac{3}{5} \text { of } 40=24
$$

If the whole is unknown but we know the quantity of one part - we can find the size of the whole.

One-sixth of a number is equal to thirty. 6 one-sixths is equal to one whole.

To find the whole, multiply the value of 1 one-sixth by 6.

$\frac{1}{6}$ of a number is 30

$$
6 \times 30=180
$$

We can skip count in unit fractions to help us find the quantity of a non-unit fraction.

To find 3 one-fifths of 40, first find one-fifth of 40 by dividing by 5, and then multiply by 3.

Generalisation:

Divide the whole by the denominator and then multiply quotient by the numerator.

